台球桌有什么作用与功效

1、台尼用于斯诺克和中式台球球桌的安装,有顺毛和逆毛。所以职业球员在出杆之前一般都会摸摸台尼的粗糙程度,捋顺台尼,减小台尼的绒毛对母球路线的影响,提高精确度。2、台布摩擦小,不好走位,台尼摩擦大,好走位。3、台尼表面含有羊毛,是用在中八斯诺克球桌上的,台布是用在特定的九球桌上的台球在母球在击打目标球后依靠惯性能够持续滚动,直到母球滚动到下次击球的最佳位置,这就是我...

1、台尼用于斯诺克和中式台球球桌的安装,有顺毛和逆毛。所以职业球员在出杆之前一般都会摸摸台尼的粗糙程度,捋顺台尼,减小台尼的绒毛对母球路线的影响,提高精确度。

2、台布摩擦小,不好走位,台尼摩擦大,好走位。

3、台尼表面含有羊毛,是用在中八斯诺克球桌上的,台布是用在特定的九球桌上的台球在母球在击打目标球后依靠惯性能够持续滚动,直到母球滚动到下次击球的最佳位置,这就是我们通常所说的"走位"。

1、量子力学的基本原理是建立在量子态的基础上的,量子态其实就是一个矢量,与我们三维空间中的矢量也差不多。

2、不过,量子态作为一个矢量是生活在哪个空间的呢?这个是我们最需要关心的问题,答案是:希尔伯特空间。

3、希尔伯特空间是以数学家希尔伯特来命名的,但你不要被这个空间吓倒,其实也很简单,你把它想像成一个矢量空间就可以了。

4、如果你不明白什么叫矢量空间,那就可以去翻翻线性代数的书,那里一上来就给出了7条定义,来定义线性空间。线性空间就是矢量空间。

5、那么好了,现在我们已经知道,量子态作为一个矢量是生活在希尔伯特空间的。

6、有了这一点,那么你就可以知道,线性空间的所有性质,都可以用在量子态上。所以在这个意义上,量子力学就是线性代数。

7、当然,量子力学比线性代数要多一些东西,多出来的东西叫什么呢?其实就是你还要有演化的概念,那就是量子态随着时间会演化的。

8、其实也很简单。量子力学的演化就是矢量在线性空间里绕着原点旋转,在旋转的过程中,矢量的方向在变,但长度不变。这个旋转在量子力学中被称为幺正演化,其实也就是我们平常说的薛定谔方程。

9、所以,要想理解量子力学,你需要有一定的线性代数的基础,如果你是文科生,那么要理解量子力学就会困难一些。为什么文科生会觉得困难?大概原因就在于大部分文科生没有学过线性代数,所以无法建立起量子态的直观的图像,因此陷入了一种似是而非的迷惘里。

台球源于英国,它是一项在国际上广泛流行的高雅室内体育运动。是一种用球杆在台上

击球、依靠计算得分确定比赛胜负的室内娱乐体育项目。台球也叫桌球(港澳的叫法)、撞球(台湾的叫法)。台球是一种用球杆在台上击球、依靠计算得分确定比赛胜负的室内娱乐。

从物理学角度来说,台球就是利用碰撞的一种游戏。主要体现在物理力学。主要是动量

守恒定律。每个球质量都一样就不考虑了。最开始击打的那个球的速度平方等于击球之后所有球各自的速度平方和。角度很重要,球的自旋方式也有讲究。

偏离比例:定位瞄准点的方法“半球法”固然是一切瞄准方法的基础,却不怎么具有实际操作性。

所谓瞄准点,就是当你击出母球时,球杆尖所对的方向,而瞄准点与母球的接触部份就

称为接触点。当母球击中目标球时,目标球就会往击中那一瞬间两球中心点连线的延伸方向前进。如果这一条联线的延伸正好对著球袋,则目标球就会不偏不倚的落入球袋中。因为如果这一条延伸线正对着球袋,就表示当母球击中目标球时,母球、目标球与球袋正好在一直线上,而力量来源就是延伸线上的母球与目标球的接触点。不过我们在前面也提到球与球袋很少同时在一条直线上。因此,我们可以将这一条"联结中心点的延长线"运用在基本的聚球技术上,而发展出可以将目标球击落球袋的技术。再说得详细一点,就是如果我们要轻易地找出目标球上的正确瞄准点,就必须先在脑中描绘出你所想要击落的目标球与球袋之间,有一条中心点至中心点的联线,而这一条假想线与目标球外围的切点,就是最理想的瞄准点。

大家都知道当击球点在中点下面的时候,母球击打到了目标球后会往后退,一般来说,击球点越下,退得就越多。当然,仅仅这一点是不够的,还得配合上角度。(角度是指球杆有球桌面的夹角),那么加多少角度才合适呢?加了角度以后,母球又会怎么走呢?应该加多大的力度来配合呢?这里就有一个力度的合成和衰减的问题了。

A:当母球击打的是目标球的正中的时候,若力度的衰减不大,那么角度越大退得就更远;若力度衰减较大,那么旋转的衰减也相应较大,这个时候,就算是加上大角度也会因为旋转的衰减而退不动了。实战中是这样的:近球加大角度退得较远,远球加角度一般在三十度左右退得较远(这里是指的全退+大力而言,若不是全退,那么角度会有相应的变化,击球点越*近中点角度相应要调大一点)

B:当母球击打的是目标球的侧面的时候,角度是以45度为分界的。具体的理论如下:母球击打目标球以后,全退加45度角,若无力度的衰减,母球会向两球的中心连线方向反弹,角度小于45度,会向母球前进的方向偏出,大于45度,会向反方向偏出,击球点偏向中心点越近,偏出就越大,力度衰减越大,向母球前进方向偏出就越大。退的力度会因为击球点的不同而不同的,击球点越薄,反弹的分力越小,退得就自然不远,越厚就越远,当然有力度的衰减相应退得就不够远,这个大家可以细细去体会。

当击球点在母球的中点上面的时候,母球击打到了目标球以后,会往前跟,击球点越上,跟得就越多。

A:击打目标球的正中的时候,角度的大小和力度的衰减原理同上,这里不再缀述。

B:当母球击打的是目标球的侧面的时候,全跟加角度,母球就会向切线的角度方向前进,举个例子:全跟加三十度,那么母球前进的方向就是和切线的三十度角。当然这里还得考虑力度的衰减和磨擦力,会有小小的偏差。

C:若目标球的前方还有一个球挡住,由于那个球的反弹,而你现在又是加的大角度,跟进的速度较快,就会有两次击球的机会,这就是为什么两个相贴的球会在加大角度的情况下两个球都一起进的原因,大家可以在实战中去体会。

当击球点在中点的左边或是右边的时候,母球碰到库边会向相应的方向反弹。击球点偏左的时候,碰到库边就会向左边跑,击球点偏右的时候同理由于是碰到库边有个反弹力,再加上偏杆让球产生旋转和库边的产生的磨擦力,这个时候母球走的方向就是两个力的合成的方向,这里同样有个力度的衰减的问题,基本原理同上面的旋转相同。所以这就是为什么加大角度有时候反而没有加小角度碰到库边反弹的角度大的道理。所以,打偏杆的时候,你可以试试加大力再加小角度的偏杆,会有惊人的偏转。因为没有具体的参数可以对比,而我对这个也只能凭经验,这里就不作理论上的阐述了。

勾球是指母球碰到库边反弹再击打目标球的击球方法。

A:基本理论是入射角等于反射角。在这里要说明的是,反弹的线是按和库边相差半个

B:当母球吃库反弹的时候(即碰库边反弹),高杆和低杆会有所衰减,但是还是能跟进和退回,所以勾球的时候,是可以加上高低杆的

高偏杆吃库后碰到目标球会按目标球前进的方向跟进

低偏杆吃库后碰到目标球会按目标球前进的反方向反弹

物理学中的碰撞分为完全弹性碰撞和非完全弹性碰撞两类。所谓完全弹性碰撞就是理想化的碰撞——在碰撞中没有能量损失。平时我们将那些材质较硬的物体间的碰撞均近似地视为完全弹性碰撞,譬如钢球之间、玻璃球之间、钢球与硬质地面之间等。非完全弹性碰撞就存在有能量损失,这也是我们常见的碰撞类型。在发生非完全弹性碰撞时,若发生碰撞的两个物体在碰撞后粘连在一起,这种碰撞称为完全非弹性碰撞,其能量损失属于最大的。无论是完全弹性碰撞,还是非完全弹性碰撞,它们均遵循动量守恒定律。动量守恒定律较之牛顿运动定律的适用范围更广,它除了适用于宇宙星体间的相互作用,也适用于微观世界中基本粒子之间的相互作用。

两个物体发生碰撞,有(对心)正碰和斜碰两种形式。对台球来说,在击打过程中,根据主球与目标球的位置不同,基本都是采用正碰和斜碰的击打方式。在斜碰的击打方式中,还要根据需要选择主球与目标球碰撞时的角度θ,这是打台球必须掌握的技巧。

碰撞现象发生在很多体育项目之中,譬如跑步——脚与地面的蹬踏;跳高、跳远——脚与地面的蹬踏;足球——脚与足球之间的撞击;篮球——运球时球与地面的碰撞及球与篮板撞击而入筐;排球——手与排球的直接撞击而形成垫球或扣球;羽毛球——球与球拍之间的撞击;乒乓球、网球除了球与球拍之间的撞击,还有球与桌(地)面之间的碰撞;??。打台球中碰撞更为明显,除了主球与目标球之间的碰撞外,还有球杆与主球的击打,目标球与台球桌边缘的碰撞。若掌握不好碰撞规律,那么台球肯定是打不好的。

下面我们分别来研究一下在打台球中,出现主球与目标球正碰或斜碰的情况:

以下取一种简单情况为例来分析——目标球原为静止的。设主球的质量为m1,击打后的速度为V1,目标球的质量为m2,碰撞后主球的速度为V1',目标球的速度为V2'。

一.若发生完全弹性正碰——碰撞过程中能量与动量均守恒。

对以上解出的答案进行一下讨论:

若m1>>m2,则碰撞后m1的速度基本不变,而m2则以m1原两倍的速度向前运动;

若m1>m2,则碰撞后m1的速度减小,而m2则以较大的速度开始向前运动;

若m1=m2,则碰撞后速率交换,即m1静止,m2以m1原有的速度运动。台球的主球与目标球的质量是相同的,若采用一般击打方式,应出现主球静止,目标球则以主球原有速度运动(速率交换)。若球杆击打主球的位置不在目标球的中部,偏上或偏下击打,主球会发生旋转,碰撞后则会出现主球后退或主球继续向前运动的情况。

若m1<m2,则碰撞后m1反向运动,而m2则以较大的速度开始向前运动;

若m1<<m2,则碰撞后m1以较大的速度反向运动,而m2则基本不动。这相当于一个

若m1、m2、v1已知,完全可以根据以上公式来计算碰撞后的V1'、V2'。以上五种情况的讨论,只是为了说明有关碰撞的规律,对于打台球来说,发生的应只是第三种情况。

二.若发生一般正碰——碰撞过程中动量守恒,但能量不守恒。也可以按照以上五种情况来讨论,由于碰撞中存在能量损失,因此碰撞后各自的速度大小都会较弹性碰撞为小。涉及碰撞,必然要说说“恢复系数”e。直白地解释,恢复系数是反映碰撞中能量损失情况的一个物理量——若e=1,则为完全弹性碰撞,没有能量损失;若e=0,则为完全非弹性碰撞,能量损失最大;若0<e<1,则为非完全弹性碰撞,有能量损失。

实验证明,对于材料一定的两个球,碰撞前相互接近的速度越大,碰撞后分离的速度也越大,而且是成正比的,即其中v1、v2分别为碰撞前两球的速度,v10、v20为碰撞后两球的速度,比例系数e就称为恢复系数,它由两个球的材料性质决定。

先讨论完全弹性斜碰,建立直角坐标系。设主球沿Y轴正方向以V的速度斜碰目标球,碰撞前两球的球心连线与X轴夹角为θ。在发生斜碰时,若θ角较大时,在击打后两球分离角度较小;若θ角较小时,在击打后两球分离角度就较大。

以两球为系统,则满足动量守恒、能量守恒。设碰撞后,主球X方向的速度分量为V1X,目标球X方向的速度分量为V2X;主球Y方向的速度分量为V1Y,目标球Y方向的速度分量为V2Y。联立可求解出V1X、V1Y、V2X、V2Y。若为非完全弹性斜碰,则碰后V1X、V1Y、V2X、V2Y的大小较完全弹性斜碰为小。

下面讨论目标球与台球桌边的碰撞,设为完全弹性碰撞。目标球以速度V1并与桌边缘夹角α发生完全弹性碰撞,由于没有能量损失,对速度可作以下分析,速度V1分解为垂直桌边缘的V1X和沿着桌边缘的V1Y;发生碰撞时,V1X大小不变、方向反向为V2X,V1Y大小与方向不变(V2Y);V1X、V2Y的合速度即为V2。这样目标球与桌边缘碰撞后反弹,速度大小不变,其角度满足θ1=θ2,这与光线斜射到镜面上发生反射的规律一样。我们常看到台球玩者在准备打这种球时,常沿着桌子转圈在比划,就是在作反弹的测量。

通过以上介绍,你对台球运动中包含的物理知识是否多了些了解?!你也可以去试试打一下,强身健体还充满乐趣。

为您推荐